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Fig. 1. Estimates k with  confidence  intervals for relative  linear  power 
contribution R from 100 simulations  each  of 100 values of R .  

Equation  (34) was  simulated  for  R = 0 ,  0.01, . * . , 1.  For 
each  value  of R ,  100 independent  realizations  of u and w of 64 
samples  during T = 10 s each  wzre  used.  From  each  resulting 
pair of realizations of u and y ,  R was  estimated  using  a  Papoulis 
correlation  window  [4]  with  maximal  window  lag-of  15  sam- 
ples, yielding  a  window  bandwidth [ 1 1 ,  [ 41 W = 1.896 X 54/ 
1 5 T =  0.80 Hz forAF1 = 0.1 and F2 = 3.2; thereforeF= 3.1  Hz. 

Fig.  1  shows R ( R )  with 95 percent  confidence  interval 
approximations  caiculated  according  to  (30)-(33).  For  the 
10 000 values of R obtained,  34 of the  actual R were  over 
and  152  under  the  calculated  95  percent  confidence  limit 
approximations. 

IV. CONCLUSIONS 
Equation  (21)  shows khat the  variance of relativelinear  power 

contribution  estimate  RAis  lower  than  that of squared  coher- 
ence  function  estim9e C ( f ) .  This  iszccomplished  at  the  cost 
of a  larger  bias in R compared  to C ( f ) ,  according to  (28). 
Such  bias  might  be  corrected  for. 

Fig. 1 shows that  for  white signals,  confidence  intervals 
derived  according to  (30)-(33)  are  reazonable  bounds on 
the  simulated  R  for  resulting  estimate R.  The  number of 
occurrences of R under  the  lower  and  over  the  upper 95 per- 
cent  confidence  limit  did  not  reach  the  mathematical  expecta- 
tion  250  each,  however.  These  deviatiop  may  be  due  to 
approximation  errors  lik2 no linearity of 2 required  for  (29) 
%ver the wide  range of R for  64  samples  or  nonnormality of 
2 .  Similar  analysis  could  be  carried out  for  arbitrary  spectra 
by using  cocoloration  factors  according to  (1 9). 
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Noise  Sensitivity of Band-Limited  Signal  Derivative 
Interpolation 

ROBERT J. MARKS I1 

Abstract-The  sensitivity of interpolation of the pth derivative  of  a 
band-limited  signal  directly  from the signal’s samples in the presence of 
additive stationary noise  is  considered.  Oversampling  and  filtering 
generally  decrease the interpolation noise  level  when the  data noise  is 
not band-limited. A lower bound on the interpolation noise  level  can 
be approached  arbitrarily  closely  by  increasing the sampling rate. The 
lower bound is equivalent to the noise  level  obtained  by  low-pass filter- 
ing  and  pth-order  differentiation of the unsampled  additive input noise. 

INTRODUCTION 
Given the  sufficiently  closely  spaced  samples of a  band- 

limited signal,  we can  directly  generate  the  pth  derivative of 
the signal through  appropriate  interpolation  functions [ 11 .’ 
Digital  filters  can  generate  good  approximations of the samples 
of the  pth derivative,  given  the  signal  samples as inputs [ 21 4 4 1 .  
The  effects of filter  design  have  been  considered.  under  the 
assumption of noiseless  data [SI .  Similarly, digital filters  for 
sample  interpolation ( p  = 0) have  also  been  considered [ 6 1 -[ 71 . 

In this  paper,  an  ideal  pth-order  differentiator is  assumed 
and  its  operation  in  the  presence of additive  input  data is ipves- 
tigated. We demonstate  that  the  noise level, in  general,  can  be 
reduced  by  increasing  the  sampling  rate.  The  reduction, how- 
ever, is sometimes  insignificant. A lower  bound  for  the  noise 
level  is  shown to be that  resulting  from  passing  the  unsampled 
input noise  through  a  cascaded  low-pass  filter  and  pth-order 
differentiator. 

In the  next  section,  preliminary  concepts  are  introduced. 
General  formulas  for  the  interpolation  noise  level  are  then 
derived,  followed  by  establishment of a corresponding  lower 
bound. In the  final  two  sections,  the  specific  cases of Laplace 
and  triangular  autocorrelations  are  considered, When appro- 
priately  parameterized,  both  degenerate  to  the  special  case of 
white  noise  samples. 

PRELIMINARIES 
Let $ denote  the  class of L 2  band-limited  signals  with 

bandwidth 2W. That is, if x ( t )  E $w, then 

where 

and 3 denotes  the  Fourier  transform  operator.  Then  the  pth 
derivative of x ( t )  is 

where  the  sampling  rate 2 8  exceeds 2W, 
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and  sinc t = sin (nt)/(nt). For p = 0, (1) becomes  the  conven- 
tional  Shannon  sampling  theorem [ 8 ] .  Define  the  sampling 
rate  parameter 

2 w  
r E - < l .  

2B 

Since x @ ) ( t )  E $w, it is unaltered  by  low-pass  filtering. Pass- 
ing (1) through a filter  unity  on If1 < W and  zero  elsewhere 
gives 

Note  that  (1) can  be  considered  as  a  special  case  for r = 1. 

EFFECTS OF ADDITIVE NOISE 
Let E(t) denote  a  real  zero-mean  wide-sense  stationary  ran- 

dom  process  with  autocorrelation 

Rg(t - 7) = E [ H t )  &)I 

where E denotes  the  expectation  operator. If the  noise  samples 
t ( n / 2 B )  are  added  to  the signal  samples  in ( 2 ) ,  the  result is 
x(P) ( t )  + vp(t)  where 

Since x ( t ) = d p [ 2 W ( 7 -  t ) + m r ]  E ~ W ,  we can  use ( 2 )  to eval- 
uate  the n sum  above.  Furthermore,  since 

d p ( t )  = (- 1)P d p ( - t )  
and 

it follows  that 

( 3 )  
Since vp(t)  is zero  mean,  the  corresponding  interpolation  noise 
level  is 

A spectral  density  description of the  process  can  be  obtained 
by  first  transforming (3) 

Sqp(,(f> = 3Rvp(t)  

Fig. 1. Cascaded  low-pass filter and pth-order differentiator. The 
output noise level 0; is a lower  bound for pth-order derivative 
interpolation from the mput samples. 

where  rect(y) is unity  for IyI < i, and  zero  elsewhere.  Appli- 
cation of the Poisson sum formula  to  the m sum gives 

where Sg(f) = f f R g ( t )  is the  input  noise  power  spectral  density. 
An alternate  expression  for  the  output  noise  level  follows  as 

c m  

W 
= ( 2 7 ~ ) ~ ~  5 I, f 2 P  S g ( f -  2nB) df. (5) 

For  the  unfiltered  case (r = l),  the  integration  interval  in (5) is 
over I f 1  < B.  Since S t  > 0, filtering  always  results  in  a  noise 
level  equal to  or  better  than  the  unfiltered case. 

n=-m 

A LOWER BOUND  ON  OUTPUT NOISE LEVEL 
Consider [( t )  input  into  the cascaded  low-pass  filter and  pth- 

order  differentiator  in  Fig.  1.  Let e( t )  denote  the  output. Re- 
call that, in  general, the  output  spectral  density So(f) due  to  a 
spectral  density  input Si(f) into  a  system  with  transfer  func- 
t ionH(f)  is  So(f) = IH(f) lZ Sj(f) [9].  Thus 

and 

Compare to (5). Since St  > 0, it  follows  that 9 is a  lower 
bound  for  the  output  noise level 

Equality is achieved  when ( ( t )  ha’s band-limited  spectral  density 
(say  over the  interval I f 1  < a) and  the  sampling  rate  is  suffi- 
ciently  high to  avoid  aliasing (i.e., 2B - > W). A lower 
sampling rate  would  result  in  aliasing  and  a  higher  output  noise 
level. 

For  finite p, Sg(f) -+ 0 as I f 1  -+ m. We see  from (5) that, as 
2B -+ *, q; + 0; . Hence,  the  bound can be  approached  arbi- 
trarily  close  by  appropriate  increase  in  sampling  rate,  Note we 
can  guarantee  from ( 5 )  that  decreases  with r if Sg(u)  de- 
creases  with u > 0. This  spectral  density  property,  however, is 
not  applicable  for  the  triangular  autocorrelation. 

- -  

TRIANGULAR AUTOCORRELATION 

Consider the triangle  autocorrelation  parameterized  by a > 0. 

R g (7) = p A ( ~ / a )  (7) 
where 

A(t)  = (1 - Itl) rect ( t / 2 ) .  



0 2  0 4  0 6  0.8 

Fig. 2. Normalized interpolation noise  level $E2 for the triangle 
autocorrelation with 2W= 1. The solid curve I S  for u = 0.1 and the 
dashed u = 0.5. The curves  are  identical for r > 1/2 where the noise 
samples  are  white.  For u = 0.1,  the  noise  samples  are  white for 
r > 0.1. 

_ _  

Substituting  into ( 4 )  gives the normalized  error. 

where 

T 2Ba 

and N is the  greatest  integer  not  exceeding T. Plots  of (8) are 
shown  in  Fig. 2 for  2W = 1  and a = 0.5 and  0.1. 

Of specific  interest is the case  where  sampling  is  performed 
such  that T < 1.  The  noise  samples  are  then  white.  That is, 

where 6, denotes  the  Kronecker  delta.  Since 

d2p(0)  = r:: ( i26I2 '  df 

(- 1 ) P T 2 P  - - 
2p + 1 

we have for  white  samples 

(10) 

For  the  conventional  sampling  theorem, p = 0 and  the noise 
level  is  improved by  a  factor of r .  

Since 2W = 1 in Fig. 2, the  plots  there  are  equivalent to (1  1) 
for r > a'. Note  (1  1) is independent of the a parameter-thus 
the merging of the a = 0.1  and 0.5 plots  at r = 0.5 .  For  the 

I 

I -  p=o 
I I I I 

0.2 0 4  06 0 8  

_ _  
Fig. 3. Normalized interpolation noise level 7;/E2 for Laplace auto- 

correlation  with 01 = 2 W  = 1. 

In Appendix A, we  show that 

where 

S i ( t )  = l* 7 d r  
sin r 

is the sine  integral  function.  Lower  bounds  for  each of the 
plots  in  Fig. 2 are  graphically  indistinguishable fromthe r = 0.1 
values. 

LAPLACE  AUTOCORRELATION 
A second  tractable  solution  results  from  the  Laplace  correla- 

tion  parameterized  by a. 

Rg(r) = E2e . - -O1171 
(1 4 )  

As is shown  in  Appendix B, the  corresponding  normalized  out- 
put  noise  level  can  be  written  in  integral  form  as 

_ _  T?i/E2 = (2nB)2p sinh - u 2 p  cosh - - COS 
2; ir [ 2B 

a 

(1 5 )  
The well-behaved  (strictly  increasing)  integrand  in  (1 5 )  provides 
for  straightforward  digital  integration.  Sample  plots of (1 5 )  
are  shown  in  Fig. 3 for 2W = 1. 

Two  special  cases of (1 5) are  worthy of note.  a)  The p = 0 
case  as plotted in Fig. 2 simply  corresponds to conventional 
sampling  theorem  interpolation  followed  by  filtering.  For  this 
case,  (1 5 )  can  be  evaluated  in  closed  form [ 101 . 

domain  shown, all  of the a = 0.1  samples  are  white. 

sampling rate  results in an  insignificant  improvement  in  the v;/g2 =; atan 
interpolation  noise level. 

for  the triangle'autocorrelation is 

Note.  there  can  exist  a  point  whereupon  a  further  increase of - - 2 

Since SA(t) = sinc2 f, from ( 6 ) ,  the  normalized  lower  bound 
b) If 

(12) ->> 1 
CY 

2B 

["" $;an T] 
cosh -- 1 

2B 
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then  (1 5) approaches 

-- 
$/.$’ = ( ~ I T B ) ~ ~  lr uZp  du 

r(2aW)2P =--- 
2p + 1 

which  is  the  same  result  as  the  discrete  white  noise  case  in 
(1  1).  Indeed,,  when  (16) is applicable,  the  noise  samples  are 
very  nearly  white  and  the  plots  for  white  samples  in  Fig.  2  can 
be  used  as  excellent  approximations. 

Here,  as  in  the  previous  example,  one  must  be  cautioned  on 
comparing  equally parame-ter$ed interpolation  noise  levels  for 
differing p .  The  units of are (s)-’~. 

For  a  lower  bound  for  the  Laplace  autocorrelation, we trans- 
form  (14)  and  substitute  into  (6).  The  result  is 

- _  4(21r)’~ f 2 P d f  

As  is shown  in  Appendix C 

( a atan E; p = o  

p = l  (1 9 )  

where 

e = 2nW/a. 

Graphically,  these  bounds  are  also  indistinguishable  from  the 
corresponding  smallest  values on  the  plots  in Fig. 3. 

APPENDIX  A 
DERIVATION OF (13) FROM (12) 

We begin by  rewriting (1 2)  as 

W c/p = -i f 2 P - 2  [ 1 - cos 2naf 1 df.  (A1 1 

For even index 

dzq(t) = [lP ( j 2 7 r ~ ) ~ ~  e 
- j2n)( t  

dX 
J-IP 

= 2(2+ (- 1)4 x Z q  cos  (27rxt) dx.  

For f= 2Wx, it  follows  from (Al)  that   for p 2 1 

Using (IO) gives (13)  for p > 1. The p = 0 case  follows  imme- 
diately  from (1 2) using  integration  by  parts. 

[An  alternate  derivation  follows  by  application of the Poisson 
sum  formula to ( S ) . ]  For  the  Laplace  autocorrelation  in  (14), 
the  n  sum  becomes 

= 1 + 2  e-mffl2B 
m 

cos nmf/B 
m = l  

= 1 + 2 R~ 0 [,-(ff+i2nflPB]m 
m = l  

a 
sinh - 

2 B  - - 
a Tf 

2 B  B 

(A31 
cosh - + COS.- 

where  Re  denotes  the  “real  part of” and we  have  used the 
geometric  series 

m 

zm = ( 1 -  z p ;  lzl< 1. 
m = o  

Substituting  (A3)  into  (A2),  recognizing  the  integrand  is  even 
and  making  the  variable  substitution f = Bu results  in (1 5). 

APPENDIX C 
DERIVATION OF (19) FROM (18) 

Set  u = 21~f/a and  (1 8) becomes 

The p = 0 case  follows  immediately.  For p > 0, consider  first 
the case  where E < 1. With 2 = -u2,  the  denominator  in  (A5) 
can  be  expanded via (A4)  and  the  resulting  integral  evaluated 
to give 

Set  n = m + p and  recall  the  Taylor  series 
( - l )n  X2n+1 

atan x = 
n=o 2 n + 1  ‘ 

Thus,  for e < 1, 

For e >  1  we rewrite  (AS)  as 

APPENDIX B uZp  du 
DERIVATION OF (1 5 )  FROM (14) AND (4) R 

Note  that we can  write  (4)  as 
From  (A4),  it  follows  that 



1032 IEEE TRANSACTIONS  ON ACOUSTICS,  SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-31, NO. 4, AUGUST 1983 

Again, with Z = - u 2 ,  we  obtain 

m e 2 p - 2 m - l  - 
+ c 2 p - 2 m -  1 
m =O 

Set n = m - p in  the m sum  and  use (A6) .  Recognizing  n/2 - 
atan l / c  = atan E for E >  0 again  yields (A7). The  recursive 
formula  for p 2 1 in  (1  9)  follows  easily  from (A7) .  
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A New Design Method of Optimal Finite Wordlength 
Linear  Phase FIR Digital Filters 

J. P.  MARQUES  DE  SA 

Abstract-The  branch  and bound technique is applied to the design 
of optimal  finite  wordlength  linear  phase FIR digital  filters  in a new 
efficient  way.  Compared to other reported  methods  there is a great 
saving  of storage  area  used  by the designing  program;  reductions in 
computation  time  are also to be  expected. 

I. INTRODUCTION 
The design  of optimal  finite  wordlength  linear  phase  FIR 

digital  filters  has  been  discussed  by  several  authors.  References 
[ 11 and  [2]  are  recent  reports  of design methods  containing 
detailed  information on the  subject. 

The design  problem  can  be  formulated  in  the  following  way. 
Given a set {(wk, ~ ( w ~ ) ) ;  wk E [ O ,  n] ,  F ( w k )  E IR, k = 1 , 2 ,  

Manuscript  received  February 8, 1982; revised October 11, 1982. 
The  author is with  the  Faculdade de Engenharia, 4099 Porto Codex, 
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* . * , M }  and  an  N-length  linear  phase  FIR  filter  characteristic 
function H(w) = ho + Xzpl hi cos (iw)-for simplicity  sym- 
metrical  odd  length  only  is  considered-find  the N, = ( N  + 1)/2 
coefficients hi that  minimize 

IIE(wk)ll E W ( w k >  ‘ IF(wk) - H(wk)l  
W k  

with hi, i = 0, 1, . . , N, - 1 : D-digit  numbers of base b .  E ( w k )  
are  the  deviations of H ( w k )  from  the desired function  values 
F ( w k )  weighted  by W(wk).  

The  interest  of  optimal  finite  wordlength  solutions  for FIR 
filters  is  easily  understood  in  connection  with  either  hardware 
or  software  implementations.  In  the  first  case,  finite  word- 
length  is  mandatory;  in  the  second case, it isrequired  for  speed- 
ing up filtering  operations  (floating  point  substituted  by  fixed 
point  operations).  In  both cases, it  can  be of interest to use 
number  bases  other  than  base  two. 

Coefficient  quantization  formulas have been  found [ 31 which 
can  guide  the  choice of a rounded  solution  wordlength  for a 
given  degradation  of the  infinite  precision  (continuous)  solu- 
tion.  However,  there  is  abundant  evidence [ 1 1 ,  [2]  that   the 
performance  of  rounded  solutions  can  be  quite  inferior to the 
optimal  one. 

Substituting  the  expressions of the deviations  by  correspond- 
ing  inequalities  in the  formulation  of  the  problem given  above, 
the  problem  clearly  becomes a particular  case  of the  mixed 
integer  programming  problem. 

The  most  successful  methods  the  author is aware  of to solve 
this  particular  problem  are  the  branch  and  bound  algorithm 
for  mixed  integer  programming  (Land  and Doig algorithm)  and 
integer  zero-one  programming [ 1 1, [ 21.  These  algorithms  are 
available  in  commercial  software  packages  and  are  described  in 
several books [ 41 , [ 51 . 

Two  difficult  aspects of the  application of these  methods 
follow. 

1) Computa t ion  Time: The design  can  take a huge  amount 
of computer  time even when  the  coefficient  values  are  restricted 
to a limited  interval  centered on the  rounded values. 

Reference [ 11  indicates  that  for a 33-point  filter  it  took  5.3 
times  longer to  find  the  best  rounded  solution  than  to  find  the 
continuous  one  (best  rounding  involves a +b-’ neighborhood 
of the  rounded values). The  optimal  solution  for  the  same 
filter  took  about  439  times  longer to find,  and it took 870 
times  longer to  prove  its  optimality. 

2 )  Storage  Area: As mentioned  above,  the  suitable  reformu- 
lation  of  the  problem is 

minimize E :  

The  algorithm  therefore  has to operate  over  an  initial  large 
and  dense  matrix  of 2M(N, + 1)  elements.  For a not  too small 
problem,  this  represents a rather big amount of storage  area. 
For instance,  with a length N = 33  and a grid  density Ng = 10 
there is a maximum  of 2 X 170 X 18 = 61  20  real  numbers. 
This  imposes a severe  limitation on the  use  of  such  design 
methods in small  systems,  namely  microcomputer  systems. 

11. PROPOSED METHOD 
The  proposedmethodis  based on the following  considerations. 
1)  The present  mixed  integer  programming  problem is, in 

fact,  originally  an  approximation  problem in the  Chebyshev 
sense.  Therefore,  it  should  be  advantageous t o  use  the special 
case of linear  programming  algorithm  suited  for  the  Chebyshev 
approximation.  This  algorithm is characterized  by a consider- 
able saving of storage  area  since  there is no  need  to  store  the 
whole  matrix  at all.  Matrix  row  values  are  functionally  defin- 
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